Chế tạo linh kiện nano thành công bằng kính hiển vi điện tử

Các nhà vật lý ở Đại học Tổng hợp Pennsylvania (Hoa Kỳ) là Michael Fischbein và Marija Drndic vừa phát minh ra một kỹ thuật hiệu quả cho phép chế tạo linh kiện nano phức tạp chỉ bằng một kính hiển vi điện tử truyền qua.

Phương pháp này tạo ra độ phân giải cao hơn nhiều so với các phương pháp chế tạo linh kiện nano khác, có thể được ứng dụng trong các ngành điện tử học nano, hay thao tác các hạt trên một con chip... Nhóm vừa công bố kết quả trên tạp chí NanoLetters.

Trong khoa họccông nghệ nano việc tạo ra các cấu trúc nano hoàn hảo, chất lượng cao đóng vai trò cực kỳ quan trọng. Mặc dù đã có nhiều thành tựu khác nhau trong việc tạo ra các cấu trúc nano, nhưng việc chế tạo, thao tác các cấu kiện nhỏ vẫn còn gặp nhiều khó khăn.

Ví dụ như công nghệ phổ biến hiện nay là quang khắc chùm điện tử (e-beam lithography - EBL) bị hạn chế khi kích thước cấu kiện giảm xuống cỡ một vài chục nanomet do nhiều hạn chế của chất phủ cản quang cũng như thao tác trên chùm điện tử. Hơn nữa, việc tạo ra các linh kiện nhỏ dưới 10 nm sử dụng phương pháp từ trên xuống (top - down) lại càng khó khăn hơn.

Hình 1. Sơ đồ nguyên lý của quá trình chế tạo (Theo NanoLetter 7(2007) 1329).

Hình 1. Sơ đồ nguyên lý của quá trình chế tạo (Theo NanoLetter 7(2007) 1329).

Mới đây, hai nhà khoa học của Đại học Tổng hợp Pennsylvania (Hoa Kỳ) là Michael Fischbein và Marija Drndic đã công bố các kết quả rằng có thể sử dụng kính hiển vi điện tử truyền qua (Transmission Electron Microscope - TEM) để chế tạo các linh kiện kim loại nhỏ dưới 10 nm với độ chính xác cao.

Tư duy đúng tạo nên khoảng cách giữa người có mức lương năm là 1 tỷ đồng và 100 triệu đồng: 5 lối tư duy giúp bạn “đánh đâu thắng đó”
Cách tiêu tiền của tỷ phú Warren Buffett
Các nước đang dùng ứng dụng gì để chống lại Covid-19?

Ban đầu, nhóm tạo ra các cấu kiện bằng phương pháp truyền thống là quang khắc chùm điện tử, là các linh kiện kim loại trên một màng điện môi SiN dày 100 nm (màng SiN là lớp đế, nhưng sẽ giúp cho chùm điện tử dễ dàng xuyên qua, đồng thời giảm sự tán xạ ngược của điện tử trong quá trình quang khắc).

Tiếp đến, hệ nà được đặt vào TEM và sẽ được tiếp tục quá trình điêu khắc với một chùm tia điện tử hẹp của kính hiển vi điện tử truyền qua.

"Thông thường, khi chùm điện tử được dùng để tạo anh ở độ phóng đại rất lớn, ta có thể quan sát thấy quá trình "điêu khắc" này diễn ra trong thời gian thực" - Fischbein giải thích. Thực chất đây là quá trình tạo ảnh động (in situ) mà cho phép điều khiển quá trình tạo cấu kiện với linh kiện cuối cùng có độ mịn và hoàn hảo cao.

Những hình dạng cụ thể ở đây là các nhà nghiên cứu đã chế tạo các dây nano các khe nano, các nhẫn nano và các linh kiện có nhiều cực. Bản chất là chùm điện tử sẽ làm bay bốc các chi tiết không cần thiết (vì chùm điện tử của TEM có năng lượng rất cao) đồng thời tạo ra hình ảnh khi truyền qua để quan sát trong thời gian thực.

Đến tận hôm nay tôi mới hiểu, tại sao bạn mình làm sếp còn tôi thì cứ mãi ở vị trí nhân viên
Người tính toán để 14 lần trúng xổ số độc đắc
Tại sao Tần Thủy Hoàng là vị vua duy nhất mặc áo long bào đen?

Cuối cùng, một thế mạnh khác của kỹ thuật (tạm gọi là "quang khắc bào mòn") là có thể làm việc mà không cần các chất cản quang hay các bước gỡ bỏ (liff-off) như các kỹ thuật quang khắc truyền thống.

Hình 2. Một số hình ảnh của các chi tiết chế tạo thành công (Theo NanoLetter 7(2007) 1329).

Hình 2. Một số hình ảnh của các chi tiết chế tạo thành công (Theo NanoLetter 7(2007) 1329).

Tất cả các cấu trúc công bố trong công trình này đều được chế tạo bằng tay, có nghĩa là các nhà khoa học di chuyển chùm tia trong khi quan sát sự bào mòn theo thời gian. Theo nhóm nghiên cứu thì nếu quá trình này được kết nối với máy tính (điều khiển các thao tác của chùm điện tử như trong công nghệ EBL), quá trình này có thể thực hiện thậm chí với độ chính xác cao hơn nhiều và tiến hành trên các diện tích lớn hơn.

Hé lộ sự thật về nơi chôn cất Tư Mã Ý: Không thể che giấu dù tìm đủ mọi kế tung hỏa mù
Lí giải tại sao chữ "x" được dùng để ký hiệu ẩn số trong toán học
Phát hiện đột phá tại 'địa ngục' sâu 3.000 km của Trái Đất: Thứ quyết định sự tồn vong chính là đây!

"Kỹ thuật này có thể ứng dụng trọng rất nhiều lĩnh vực của khoa học và công nghệ nano (nanoelectronics, nanofluids, plasmonics...)" - Fischbein phát biểu với phóng viên của Nanotechweb.org - "Một điểm thú vị riêng trong công trình vừa công bố này là tạo ra các linh kiện khe và các lỗ nano cho các biochip (DNA sequencing)". 

 

Làm Mới
Bài viết cùng chuyên mục