Lực đen - một lực mới trong vũ trụ, nay còn trở nên kỳ lạ hơn

Một nghiên cứu mới đây đã mở rộng thêm những hiểu biết trong việc khám phá ra lực đen, cho thấy ảnh hưởng của bức xạ đối với các hạt xung quanh những vật thể lớn có thể được phóng đại bởi không gian bao quanh chúng.

Lực đen - một lực mới trong vũ trụ

Phát hiện này có thể ảnh hưởng đến cách chúng ta mô phỏng sự hình thành của các vì sao và hành tinh thậm chí còn giúp chúng ta phát hiện ra một dạng bức xạ lý thuyết giải thích cho cái chết của hố đen (sự bay hơi hố đen).

Lực đen có thể phần nào giải thích được sự bay hơi của hố đen.

Lực đen có thể phần nào giải thích được sự bay hơi của hố đen.

Vào năm 2013, các nhà vật lý đã cho biết bức xạ phát ra từ các vật thể gọi là "vật thể đen" không những có thể đẩy các hạt nhỏ ra xa, mà còn có thể kéo chúng lại gần. Hơn nữa, đối với những vật thể có đủ sức nóng và có khối lượng nhỏ, lực đẩy có thể mạnh hơn cả lực hấp dẫn của chúng.

Vật thể đen (vật đen tuyệt đối hay ngắn gọn là vật đen) là vật thể hấp thụ hoàn toàn ánh sáng nhìn thấy, chúng không phản xạ hay tán xạ lại ánh sáng.

Tư duy đúng tạo nên khoảng cách giữa người có mức lương năm là 1 tỷ đồng và 100 triệu đồng: 5 lối tư duy giúp bạn “đánh đâu thắng đó”
Cách tiêu tiền của tỷ phú Warren Buffett
Các nước đang dùng ứng dụng gì để chống lại Covid-19?

Về mặt kỹ thuật, các vật thể đen mô tả một cách lý thuyết những vật thể hoàn toàn không phản xạ với bất kỳ ánh sáng nào. Các vật thể đen phát ra bức xạ và làm những hạt xung quanh rung động, điều này giúp các nhà nghiên cứu có thể mô tả tính chất nhiệt của vật thể.

Một vật thể đen nhân tạo.

Một vật thể đen nhân tạo.

Bốn năm trước, một nhóm các nhà nghiên cứu của Úc đã tìm ra rằng, bức xạ được phát ra từ một vật thể đen có ảnh hưởng rất lạ đối với những nguyên tử ở gần đó.

Để tìm hiểu hiệu ứng này, chúng ta cần biết rằng các nguyên tử có thể di chuyển và thay đổi hướng khi các photon mà chúng hấp thụ gây ra sự dịch chuyển xung lượng của nguyên tử. Trong điều kiện thích hợp, các vật thể lớn cỡ một tế bào có thể bị đẩy vòng quanh bởi một chùm ánh sáng - một hiện tượng thường được sử dụng trong một dạng công nghệ gọi là nhíp quang học.

Từ lâu, các nhà vật lý đã biết rằng bức xạ điện từ có thể làm thay đổi tính chất của các nguyên tử gần đó thông qua hiệu ứng Stark, nó làm thay đổi vị trí của các electron trong nguyên tử và đặt nó trong trạng thái năng lượng thấp hơn. Điều này xảy ra để làm các nguyên tử có xu hướng di chuyển về phía trước, đến những phần sáng hơn trong một chùm sáng.

Đến tận hôm nay tôi mới hiểu, tại sao bạn mình làm sếp còn tôi thì cứ mãi ở vị trí nhân viên
Người tính toán để 14 lần trúng xổ số độc đắc
Tại sao Tần Thủy Hoàng là vị vua duy nhất mặc áo long bào đen?

Các nhà vật lý người Úc đã ứng dụng cả hai hiểu biết này, cho thấy bức xạ nhiệt không những có thể làm cho ánh sáng đẩy các hạt ra xa như thế nào, mà còn cho thấy chúng cũng có thể kéo các hạt về phía vật thể (nhờ có hiệu ứng Stark).

Mặc dù lực này rất yếu, nhưng chúng vẫn cho thấy sức kéo của bức xạ thực sự có thể lớn hơn trọng lực tạo ra bởi những vật thể nóng có khối lượng nhỏ, thông qua những hạt có kích thước nhỏ hơn cả bụi.

Lực đen

Lực đen

Không lâu sau đó, một nhóm các nhà vật lý khác đã tiếp cận đến những vấn đề mà Sonnleitner và các đồng nghiệp bỏ lại. Họ đang nghiên cứu ảnh hưởng của cả hình dạng vật thể đen và những tác động của nó đối với độ cong của không-thời gian xung quanh sự hấp dẫn và đẩy lùi này.

Đặc biệt, họ đã tính toán được độ cong của không gian xung quanh một vật đen hình cầu và một vật đen hình trụ, họ cũng đo được những ảnh hưởng của lực bức xạ vật chất đen khác nhau như thế nào.

Hé lộ sự thật về nơi chôn cất Tư Mã Ý: Không thể che giấu dù tìm đủ mọi kế tung hỏa mù
Lí giải tại sao chữ "x" được dùng để ký hiệu ẩn số trong toán học
Phát hiện đột phá tại 'địa ngục' sâu 3.000 km của Trái Đất: Thứ quyết định sự tồn vong chính là đây!

Đối với vật đen hình cầu các nhà khoa học đã đo được độ cong và cấu trúc liên kết không gian xung quanh nó, cùng với một hiệu ứng phóng đại đối với lực hấp dẫn do những ảnh hưởng của cả trọng lực và góc của bức xạ tác động lên các hạt.

Còn đối với trường hợp của vật đen hình trụ thì điều này không xảy ra, do nó có những về mặt phẳng và không gian xung quanh, nơi mà hiệu ứng đen không bị phóng đại.

Mặc dù hiệu ứng này sẽ không thể phát hiện trong phòng thí nghiệm hay thậm chí là các vật thể có kích thước Mặt Trời nhưng đối với các vật thể đen khổng lồ như những ngôi sao neutron thì hiệu ứng này có thể tạo ra được khác biệt đáng kể.

Làm Mới
Bài viết cùng chuyên mục